Origin of some Math symbols

Origin of some Math symbols

 

Origin of some Math symbols with meaning, introduced by and the year.

 

Here’s the corrected and rewritten version of the table:

Symbol
Meaning
Introduced by
Year
Infinity John Wallis 1655
e Base of the natural logarithm Leonhard Euler 1736
π Ratio of the circumference to the diameter William Jones 1706
i Square root of -1 Leonhard Euler 1777 (published in 1794)
j, k Unit vectors William Rowan Hamilton 1853
Π(α) Angle of parallelism Nikolai Lobachevsky 1835
x, y, z Unknown or variable quantities René Descartes 1637
v⃗ Vector Augustin-Louis Cauchy 1853
+, – Addition, Subtraction German mathematicians End of 15th century
× Multiplication William Oughtred 1631
Multiplication Gottfried Wilhelm Leibniz 1698
:: Division Gottfried Wilhelm Leibniz 1684
a²,…,an Powers René Descartes 1637
Square root Christoph Rudolff 1525
n√ n-th roots Albert Girard 1629
Log Logarithm Johannes Kepler 1624
log Logarithm Johann Bernoulli 1698
sin Sine Leonhard Euler 1748
cos Cosine Leonhard Euler 1748
tan Tangent Leonhard Euler 1753
arctan Inverse tangent (arctangent) Joseph Louis Lagrange 1772
sh Hyperbolic sine Vincenzo Riccati 1757
ch Hyperbolic cosine Vincenzo Riccati 1757
dx, ddx, d²x, d³x,… Differentials Gottfried Wilhelm Leibniz 1675 (published in 1684)
∫y dx Integral of y with respect to x Gottfried Wilhelm Leibniz 1675 (published in 1684)
d/dx Derivative with respect to x Gottfried Wilhelm Leibniz 1675
Symbol
Meaning
Introduced by
Year
f′, y′, f′′ Derivative Joseph Louis Lagrange 1770-1779
Δx Difference, Increment Leonhard Euler 1755
∂/∂x Partial derivative with respect to x Adrien-Marie Legendre 1786
∫ f(x) dx Definite integral Jean-Baptiste Joseph Fourier 1819-1820
Sum Leonhard Euler 1755
Product Carl Friedrich Gauss 1812
! Factorial Christian Kramp 1808
x Absolute value    
lim Limit Sylvestre l’Huillier 1786
lim n→∞</sub> Limit as n approaches infinity Various mathematicians Beginning of 20th century
ζ Riemann zeta-function Bernhard Riemann 1857
Γ Gamma function Adrien-Marie Legendre 1808
Δ Laplace operator Robert Murphy 1833
Nabla, Hamilton operator William Rowan Hamilton 1853
ϕx Function Johann Bernoulli 1718
= Equality Robert Recorde 1557
>, < Greater than, Less than Thomas Harriot 1631
Congruence Carl Friedrich Gauss 1801
Parallel William Oughtred 1677 (posthumously published)
Perpendicular Claude-Gaspard Bachet 1634

←BACK