Origin of some Math symbols
Origin of some Math symbols with meaning, introduced by and the year.
Here’s the corrected and rewritten version of the table:
Symbol |
Meaning |
Introduced by |
Year |
---|---|---|---|
∞ | Infinity | John Wallis | 1655 |
e | Base of the natural logarithm | Leonhard Euler | 1736 |
π | Ratio of the circumference to the diameter | William Jones | 1706 |
i | Square root of -1 | Leonhard Euler | 1777 (published in 1794) |
j, k | Unit vectors | William Rowan Hamilton | 1853 |
Π(α) | Angle of parallelism | Nikolai Lobachevsky | 1835 |
x, y, z | Unknown or variable quantities | René Descartes | 1637 |
v⃗ | Vector | Augustin-Louis Cauchy | 1853 |
+, – | Addition, Subtraction | German mathematicians | End of 15th century |
× | Multiplication | William Oughtred | 1631 |
⋅ | Multiplication | Gottfried Wilhelm Leibniz | 1698 |
:: | Division | Gottfried Wilhelm Leibniz | 1684 |
a²,…,an | Powers | René Descartes | 1637 |
√ | Square root | Christoph Rudolff | 1525 |
n√ | n-th roots | Albert Girard | 1629 |
Log | Logarithm | Johannes Kepler | 1624 |
log | Logarithm | Johann Bernoulli | 1698 |
sin | Sine | Leonhard Euler | 1748 |
cos | Cosine | Leonhard Euler | 1748 |
tan | Tangent | Leonhard Euler | 1753 |
arctan | Inverse tangent (arctangent) | Joseph Louis Lagrange | 1772 |
sh | Hyperbolic sine | Vincenzo Riccati | 1757 |
ch | Hyperbolic cosine | Vincenzo Riccati | 1757 |
dx, ddx, d²x, d³x,… | Differentials | Gottfried Wilhelm Leibniz | 1675 (published in 1684) |
∫y dx | Integral of y with respect to x | Gottfried Wilhelm Leibniz | 1675 (published in 1684) |
d/dx | Derivative with respect to x | Gottfried Wilhelm Leibniz | 1675 |
Symbol |
Meaning |
Introduced by |
Year |
f′, y′, f′′ | Derivative | Joseph Louis Lagrange | 1770-1779 |
Δx | Difference, Increment | Leonhard Euler | 1755 |
∂/∂x | Partial derivative with respect to x | Adrien-Marie Legendre | 1786 |
∫ f(x) dx | Definite integral | Jean-Baptiste Joseph Fourier | 1819-1820 |
∑ | Sum | Leonhard Euler | 1755 |
∏ | Product | Carl Friedrich Gauss | 1812 |
! | Factorial | Christian Kramp | 1808 |
x | Absolute value | ||
lim | Limit | Sylvestre l’Huillier | 1786 |
lim n→∞</sub> | Limit as n approaches infinity | Various mathematicians | Beginning of 20th century |
ζ | Riemann zeta-function | Bernhard Riemann | 1857 |
Γ | Gamma function | Adrien-Marie Legendre | 1808 |
Δ | Laplace operator | Robert Murphy | 1833 |
∇ | Nabla, Hamilton operator | William Rowan Hamilton | 1853 |
ϕx | Function | Johann Bernoulli | 1718 |
= | Equality | Robert Recorde | 1557 |
>, < | Greater than, Less than | Thomas Harriot | 1631 |
≡ | Congruence | Carl Friedrich Gauss | 1801 |
∥ | Parallel | William Oughtred | 1677 (posthumously published) |
⊥ | Perpendicular | Claude-Gaspard Bachet | 1634 |
Recent Comments